

The Automotive Forum 2025

23rd September 2025 Jaarbeurs Convention Centre, Room Progress

Robotic-Assisted Radar Transmission Measurements of Painted Bumper Samples to Validate TLM Simulations

For more information visit perisens at Booth C119

This project is made in cooperation with

and with

Introduction & Objectives

- \triangle Goal: Measure 76–81 GHz transmission t through painted bumpers to validate Transmission Line Model (TLM)
- **Setup:** Cobot, UR5e + Radome Measurement System RMS-C, perisens
- **Samples**: Substrates coated with generic automotive paints from PPG (non-pigmented and pigmented: mica, aluminium, iron-oxide)
- \triangle Measurement: Transmission t between ±60° incident (in E/H polarization)
- **Compare:** Measurements vs simulation (non-magnetic, isotropic TLM)
- **△ Outcome:** Good agreement with \leq 0.07 dB amplitude & \leq 0.7° phase difference

Silver dollar aluminium Clear Coat Base Coat Corn flake aluminium Primer Substrate PVD aluminium 100 µm

Transmission Line Model

The Transmission Line Model (TLM) model allows us to calculate the transmission and reflection coefficient t and r by knowing the characteristics of every layer thicknesses d_i , material properties $\varepsilon_{r,i}$ and $\mu_{r,i}$ and the characteristic of the incident planar wave angle of incidence α_0 , polarization ψ and frequency f.

- ▲ TLM model is used as a base line in this research
- \blacktriangle TLM model allows us, under certain conditions, to estimate the permittivity $\varepsilon_{r,i}$
- **A** TLM model is used in the automotive industry to help find the optimal thickness to minimize reflectivity and maximize transmission of painted bumpers

Measurement Process

(B) Determining the permittivity using RMS-D, perisens

Results & Conclusion

Base coat description (weight percentage in liquid paint)	Base coat thickness (μm)	Base coat relative permittivity		1way-transmission Mean Absolute Error (E-Field/H-Field)	
		$oldsymbol{\epsilon}_{ m r}'$	tan 8	dB	deg
Paint without effect pigment (reference)	10	2.45	0.700	0.04 / 0.02	0.40 / 0.27
Silver dollar aluminium coarse D50: 36 μm (2.21 %)	11	23.12	0.060	0.07 / 0.03	0.35 / 0.24
Corn flake aluminium coarse D50: 22 µm (2.02 %)	10	29.25	0.090	0.07 / 0.03	0.44 / 0.38
PVD aluminium pigment (1,86 %)	11	16.83	0.083	0.05 / 0.02	0.37 / 0.36
Mica silver fine (1.57 %)	12	3.68	0.383	0.06 / 0.03	0.37 / 0.23
Iron glimmer (1.86 %)	14	10.96	0.109	0.06 / 0.03	0.48 / 0.5
Iron oxide yellow opaque (3 %)	12	5.15	0.542	0.03 / 0.02	0.36 / 0.38
Iron oxide red opaque (3 %)	11	3.07	0.402	0.06 / 0.03	0.61 / 0.52
Iron oxide coated aluminium pigment (1.57 %)	12	11.18	0.127	0.05 / 0.04	0.30 / 0.35

- A Robot based measurement of 10 samples with different base coat materials having permittivity ranging from 2.4 to 29
- **A Good agreement of measured and simulated transmission** for pure substrate, metallic paints and mica paints
- A Mean absolute error ≤0.07 dB amplitude & ≤0.7° phase error for incident angles of ±60° for all tested samples
- A The Transmission Line Model assumptions of **isotropy** and **non-magnetism** are not affected by alumina, mica or iron oxide pigments

* This work was conducted as a part of the international research project MID4automotive, for a call by the EUREKA cluster Xecs. The project is publicly funded by the German Federal Ministry of Research, Technology and Space (BMFTR) and the Netherlands Enterprise Agency (RVO).

